The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
$ \sim q \vee \left( {p \wedge r} \right)$
$ \sim q \vee \left( {p \wedge \sim r} \right)$
$ \sim q \wedge \left( { \sim p \wedge r} \right)$
$ \sim q \wedge \left( {p \wedge \sim r} \right)$
The contrapositive of the statement "if I am not feeling well, then I will go to the doctor" is
If $(p \wedge \sim q) \wedge r \to \sim r$ is $F$ then truth value of $'r'$ is :-
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is