The negation of the statement $q \wedge \left( { \sim p \vee  \sim r} \right)$

  • A

    $ \sim q \vee \left( {p \wedge r} \right)$

  • B

    $ \sim q \vee \left( {p \wedge  \sim r} \right)$

  • C

    $ \sim q \wedge \left( { \sim p \wedge r} \right)$

  • D

    $ \sim q \wedge \left( {p \wedge  \sim r} \right)$

Similar Questions

The contrapositive of the statement "if I am not feeling well, then I will go to the doctor" is

  • [JEE MAIN 2014]

If $(p \wedge \sim q) \wedge r  \to \sim r$ is $F$ then truth value of $'r'$ is :-

Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :

  • [JEE MAIN 2021]

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :

  • [JEE MAIN 2015]

Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is